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7T - Fréchet-Urysohn spaces®

V. RENUKADEVI AND B. PRAKASH

ABSTRACT. In this paper, we introduce the concept ss-sequentially quo-
tient mapping. Using this concept, we characterize s-Fréchet-Urysohn
spaces and s-sequential spaces.

Finally, we develop the properties of Z-Fréchet-Urysohn spaces which
is the generalized form of s-Fréchet-Urysohn spaces. Also, we give an
example that product of two Z-Fréchet-Urysohn spaces need not be an
Z-Fréchet-Urysohn space for any 7.

1. INTRODUCTION

The concept of convergence of a sequence of real numbers has been
extended to statistical convergence independently by Fast [7] and Schoen-
berg [29]. If K C N, then K,, will denote the set {k € K : k < n} and |K,|
stands for the cardinality of K,,. The natural density of K is defined by

d(K) = lim Eel

n—oo
if the limit exists [12, 23]. A sequence {z,} in a topological space X is said
to converge statistically [20](or shortly s-converge) to x € X, if for every
neighborhood U of z, d({n € N : x,, € U}) = 1. Any convergent sequence
is statistically convergent but the converse is not true [27]. But in general,
s-convergent sequences satisfy many of the properties of ordinary convergent
sequences in metric spaces. It has been discussed and developed by many
authors [3, 5, 6, 9, 10, 11, 21, 22, 25, 26|.

The concept of Z-convergence of real sequences [13, 14] is a generalization
of statistical convergence which is based on the structure of the ideal Z
of subsets of the set of natural numbers. In the recent literature, several
works on Z-convergence including remarkable contributions by Salét et al
have occured [2, 4, 13, 14, 16, 19, 28]. The idea of Z-convergence has been
extended from real number space to topological space [17] and to a normed
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linear space [28|. Z-convergence coincides with the ordinary convergence if
T is the ideal of all finite subsets of N and with the statistical convergence
if 7 is the ideal of subsets of N of natural density zero.

We recall the following definition ([15], p.34).

If X is a nonvoid set, then a family of sets Z C 2% is an ideal if (i) A, B € T
implies AU B € T and (ii) A € Z, B C A implies B € Z. The ideal is called
nontrivial if T # {0} and X ¢ Z. A nontrivial ideal Z is called admissible if
it contains all the singleton sets. Several examples of nontrivial admissible
ideals may be seen in [13|. x,, — x denotes a sequence {z,} converging to
x. Let X be a space and P C X. A sequence {z,} converging to z in X is
eventually in P if {z,,/n > k} U {z} C P for some k € N; it is frequently in
P if {xy, } is eventually in P for some subsequence {z, } of {z,}. Let P be
a family of subsets of X. Then UP and NP denote the union U{P/ P € P}
and the intersection N{P/ P € P}, respectively.

Throughout this paper, (X, 7) will stand for a topological space and Z
for a nontrivial admissible ideal of N, the set of all positive integers and all
functions f : X — Y are continuous and onto.

Definition 1.1. Let P = U{P, | = € X} be a cover of a space X. Assume
that P satisfies the following conditions (a) and (b) for each x € X.

(a) Py is a network at x in X, i.e., x € NPy and for each neighborhood
U ofxin X,P CU for some P € P,.
(b) If U,V € Py, then W CUNV for some W € P,.

P is called a weak base |1] of X if whenever G C X, G is open in X if
and only if for each x € G, there exists P € P, such that P C G. The space
X is weakly first-countable [1| if X has a weak base P such that each P, is
countable for each x € X.

Definition 1.2. (a) f is called pseudo-open [1] if for each y € Y and
each neighborhood U of f~Y(y) in X, y € int(f(U)).

(b) Let f : X — Y be a mapping. f is sequentially quotient [18] if for
every convergent sequence S in'Y, there is a convergent sequence L
in X such that f(L) is an infinite subsequence of S. Equivalently, if
whenever {y,} is a convergent sequence in'Y , there is a convergent
sequence {zy} in X with each xy, € f~(yn,) [30].

Definition 1.3. Let X be a space. P C X is called a sequential neighborhood
of x in X, if each sequence convergence to x € X is eventually in P. A subset
U of X is called sequentially open if U is a sequential neighborhood of each
of its points. X s called a sequential space [8] if each sequentially open
subset of X is open. X is called a Fréchet-Urysohn space [8] if for each
z € cl(A) C X, there exists a sequence {x,} such that {x,} converges to x
and {x,/n € N} C A.
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Definition 1.4. [17] A sequence {x,} in X is said to be I-convergent to
zo € X if for any nonvoid open set U containing xo, {n € N/x, ¢ U} € Z.
We call xo as the Z-limit of the sequence {x,}.

Definition 1.5. |24] O is Z-sequentially open if and only if no sequence in
X\ O has an Z-limit in O.

Definition 1.6. (24| A subset A of a space X is said to be an Z-sequentially
closed set if for every sequence {x,,} in A with {x,} Z-converges to x, then
x € A

Definition 1.7. [24] A topological space is I-sequential when any set O is
open if and only if it is T-sequentially open.

Even though we mainly deal with Z-sequential and Z-Fréchet-Urysohn
spaces, we see the basic definitions for s-sequential and s-Fréchet-Urysohn
spaces which will be useful for the theorems which deal s-sequential and s-

Fréchet-Urysohn spaces. An Z-sequential space X is statistically sequential
ifZ={AcC X/d(A) =0}.

Definition 1.8. A subset K of the set N is called statistically dense [20] if
d(K)=1.

Definition 1.9. A space X is called statistically sequential(or shortly, s-
sequential) space |20] if for each non-closed subset A C X, there is a point
x € X\ A and a sequence {x,} in A statistically converging to x.

There is another way to define s-sequential space.

Definition 1.10. A subset A of a space X is said to be a statistically sequen-
tially open set (s-sequentially open) [31] if for any sequence {x,} statistically
converge to x and x € A, then |{n/z, € A}| = w.

A topological space is s-sequential when any set O is open if and only if it is
s-sequentially open.

A topological space X is statistically Fréchet-Urysohn [20](or shortly, s-
Fréchet-Urysohn), if for each A C X and each x € cl(A), there is a sequence
i A statistically converging to x.

Definition 1.11. A subsequence S of the sequence L is called statistically
dense in L [11] if the set of all indices of elements from S is statistically
dense.

Definition 1.12. A subsequence {xy, } of the sequence {xy} is called a thin
subsequence of {x,} [31] if d(K) = 0 where K = {n;/k € N}.

Remark 1.13. [17, 20]

(a) The limit of an I-convergent sequence is uniquely determined in
Hausdorff spaces.

(b) If a sequence {xy,} converges to x in the usual sense, then it statis-
tically converges to x. But the converse is not true in general.
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(c) A sequence {x,} is statistically convergent if and only if each of its
statistically dense subsequence is statistically convergent.

(d) If a sequence {x,} Z-converges to x, then every subsequence {Zn, }n,em\ 1
1s T-convergent for every I € T.

Lemma 1.14. [24] Let X be a topological space and A C X. Then the
following hold.

(a) A is Z-sequentially open.

(b) X \ A is Z-sequentially closed.

2. Z-FRECHET-URYSOHN SPACE

In this section, we introduce Z-Fréchet-Urysohn spaces and study their
properties. A space X is called an Z-Fréchet-Urysohn space if for each
A C X and each = € cl(A), there is a sequence in A Z-converges to x.

It is easy to see that, if Z is an admissible ideal, then the following
implications hold.

Fréchet-Urysohn space — Z-Fréchet-Urysohn space
\ \:
Sequential space — Z-sequential space
If7 ={A C N/d(A) = 0}, then Z-Fréchet-Urysohn space becomes s-Fréchet-
Urysohn space.

Proposition 2.1. Subspace of an I-Fréchet-Urysohn space is an I-Fréchet-
Urysohn space.

Proof. Let Y be a nonempty subspace of X and = € cly(A) where A C
Y. Then cly(A) = Y Nelx(A) which implies z € clx(A). Since X is an
Z-Fréchet-Urysohn space, there exists a sequence in A Z-converges to x.
Therefore, Y is an Z-Frechet-Urysohn space. U

Proposition 2.2. The disjoint topological sum of any family of Z-Fréchet-
Urysohn spaces is an L-Fréchet-Urysohn space.

Proposition 2.3. If f : X = Y is a quotient map, when X is an T-Fréchet-
Urysohn space, then'Y is an I-Fréchet-Urysohn space <> f is pseudo open.

Proof. Suppose that Y is an Z-Fréchet-Urysohn space. Let y € Y and U be
an open neighborhood of f=1(y). If y ¢ intf(U), then y € cl(Y \ f(U)).
Since Y is an Z-Fréchet-Urysohn space, there is a sequence {y,} C Y \
f(U) I-converges to y. Since f is quotient, cl(f~1({yn})) C f~Hcl{yn}) =
F*{yn}) U f~(y). Since U is an open neighborhood of f~!(y) and U N
F {ynd) = 0, 1 y) N el(f ({yn})) = 0 and thus, f~'({ya}) is closed.
This implies X \ f~'({yn}) = f~H(Y \ {yn}) is open. Since f is quotient,
Y \{yn} is open which is a contradiction to {y,} Z-converges to y. Therefore,
y € intf(U) and hence f is pseudo open.
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Conversely, let y € cl(A) with A C Y. Suppose f~(y)Nel(f~1(A4)) = 0. Let
U=X\dc(f1(A4)). Then f~!(y) C U and f is pseudo open implies that

y €int(f(U)) < int(f(int(X\ f71(4))))
C int(intf(X\ f1(A)))
= antf(X\ f7H(4))
= int(Y \ A)
= Y \d(A)

Therefore, y € Y\ cl(A) which is a contradiction. There exists x € f~1(y) N
cl(f~(A)). Since X is Z-Fréchet-Urysohn, there exists a sequence {x,} C
f~1(A) such that {x,} Z-converges to x so that {f(z,)} C A and {f(x,)}
T-converges to y. Therefore, Y is an Z-Fréchet-Urysohn space. O

Since Cartesian product of two Fréchet-Urysohn spaces is not a Fréchet-
Urysohn space, naturally, one can arise a question that "Is Cartesian product
of two Z-Fréchet-Urysohn spaces is Z-Fréchet-Urysohn space?" The answer
is not for all Z as shown by the following Example 2.4.

Example 2.4. Let Sy, = {zmn/n € N} U{xm} be a space with a topology
defined as follows:
Each {xm n}is open and U is a neighborhood of xp,, then {n/zp,,, ¢ U} €
Z. Clearly, each S,, is an I-Fréchet-Urysohn space and X' be the disjoint
topological sum of Sy, for m € N. By Proposition 2.2, X' is an I- Fréchet-
Urysohn space. Now form X from X' by identifying all x,, to x1. Then the
natural map f : X' — X is a psuedo open map, since for a neighborhood
U of f~Y(x), f(U) is a neighborhood of x. By Proposition 2.3, X is an I-
Fréchet-Urysohn space.
Let Y = {xzp/n € N} J{z} be a space with a topology as defined for Sy, and
hence Y is an I-Fréchet-Urysohn space.
But X xY is not an Z-Fréchet-Urysohn space.
For A= | (Sm x{zm}), z = (z1,2) € cl(A).
meN

Suppose there exists a sequence {(x},, pn) }nen Z-converges to (x1,x). Then
{m (2}, xn) }nen Z-converges to x1 and {ma(x},, ) tnen Z-converges to x, by
Proposition 2.1 in [24]. {m1(z),, Tn)}}nen = {2, }nen Z-converges to x1 im-
plies for some m, xl, € Sy, forn € N' ¢ I. This implies that {ma(x],, xp) tnen’ =
{Zmtnen' is a constant sequence T-converges to x,. Since Y is Hausdorff
and the subsequence {xy, }n,en» of an I-convergent sequence {xp}nen Z-
converges to x if N & I, {xp}nen’ L-converges to x that is, {xp}tnen
Z-converges to two different limits which is a contradiction.
Therefore, there is no sequence in A I-converges to x.
Hence X XY s not an Z-Fréchet-Urysohn space.

Theorem 2.5. Fvery Z-Fréchet-Urysohn space is an I-sequential space.
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Proof. Let U be an Z-sequential open set. Let z € ¢l(X \ U). Then there
exists a sequence {x, } in X \U Z-converges to x. Now X \U is Z-sequentially
closed implies © € X \ U. Therefore, X \ U is closed and hence U is open.
Therefore, X is an Z-sequential space. O

Converse of the above Theorem 2.5 need not be true as shown by Ex-
ample 3.1 [31].

Proposition 2.6. If every subspace of a space X is I-sequential, then X is
an I-Fréchet-Urysohn space.

Proof. Let x € cl(A). If x € A, then the proof is obvious. If z ¢ A, then A is
not closed in X. Now let Y = AU{x}, then A is not closed in Y. But by our
assumption, Y is an Z-sequential space. Therefore, there exists a sequence
{zn} C A such that {z,,} Z-converges to z. O

Theorem 2.7. Let X be an Z-Fréchet-Urysohn space. If W is a weak neigh-
borhood of v € X, then x € int(W).

Proof. Suppose x ¢ int(W). Then = € c¢l(X \ W). Since X is an Z- Fréchet-
Urysohn space, there exists a sequence {x, } in X \ W Z-converges to x € W.
This implies that W is not an Z-sequential neighborhood of x in X which is
a contradiction. Therefore, = € int(W). O

Corollary 2.8. Let X be an Z-Fréchet-Urysohn space. If X is weakly first
countable, then X is first countable.

Lemma 2.9. FEvery Z-Fréchet-Urysohn space is J -Fréchet-Urysohn space
—I1ICJ.

Proof. Suppose Z ¢ J that is, there exists I € Z and I ¢ J. Now form a
space X = {zp tnen U{z} and its topology is defined as follows :

Each {z,} is open and each neighborhood U of x is such that {n/z, ¢ U} €
7.

Then clearly X is an Z-Fréchet-Urysohn space.

Now let A = {z,,/n ¢ I}.

Then z € cl(A) and there is no sequence in A which is J-convergent to x.
Suppose {Z, }neny C A J-converges to x.

Form U = {z,/n ¢ I}|J{z} which is an open neighborhood of z.

{n/x, ¢ U} = I ¢ J which is a contradiction. Therefore, X is not a J-
Fréchet-Urysohn space.

Conversely, suppose Z C J

Let X be an Z-Fréchet-Urysohn Space and z € cl(A).

Then there exists a sequence {z,}neny C A such that {z,} Z-converges to
x, that is, {n/x, ¢ U} € T for all neighborhood U of x.

Since Z C J, {n/x, ¢ U} € J for all neighborhood U of x.

Then the sequence {x,} in A J-converges to .

Therefore, X is a J-Fréchet-Urysohn space. O
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3. SS-SEQUENTIALLY QUOTIENT MAPS

In this section, we introduce a map namely, ss-sequentially quotient map
and using this we characterize s-sequential spaces and s-Fréchet-Urysohn
spaces. Also, we give their properties. A mapping f : X — Y is said to be
an ss-sequentially quotient map if for given {y,} s-converges to y in Y, there
exist {z,} s-converges to z, z € f~!(y) and x, € f~(y,). In Proposition
3.1, s-0 X denote the set X topologized by the statistical sequential closure
of the relative topology from X that is, all statistically sequentially open
sets are open. Therefore, X and s-cX have same s-convergent sequences
and hence it is easy to prove Proposition 3.1.

Proposition 3.1. Let f: X — Y be a mapping and g = fls—ox : 550X —
s-oY. Then f is an ss-sequentially quotient if and only if g is ss-sequentially
quotient.

By Proposition 2.1 in [24] and the definition of ss-sequentially quotient
mapping, the proof of the following Proposition 3.2 is clear.

Proposition 3.2. Let f: X =Y and g : Y — Z be any two mappings.
Then the following hold.

(a) If f and g are ss-sequentially quotient, then g o f is ss-sequentially quo-
tient.

(b) If go f is ss-sequentially quotient, then g is ss-sequentially quotient.

Proposition 3.3. For any topological space, the following hold.

(a) Finite product of ss-sequentially quotient mappings is ss-sequentially quo-
tient.

(b) ss-sequentially quotient mappings are hereditarily ss-sequentially quotient
mappings.

Proof. (a) Let [IY, fi : [T, X; — [IY, Vi be a map where each f; :

X; — Y, is ss- sequentially quotient map for ¢ = 1,2,3,...N. Let
{(4in)}nen be s-converges to (y;) in []x, Y;. By Proposition 2.1 in
[24], each {y;n} is a sequence s-converges to y; in Y;. Since each
fi is an ss-sequentially quotient map, there exists a sequence {z;,}
s-converges to x; such that fi(zin) = yin.
Take (z;) € Hfil X;. Then {(x;n)} s-converges to (z;), since for
neighborhood U of (z;), there exists a thin subsequence Nj; of N for
each i =1,2,3,...N such that {n € N/(z;,) ¢ U} € JN; which is a
thin subsequence of N as set of all thin subsequence form an ideal.
Therefore, Hf\;l fi 1s an ss-sequentially quotient map.

(b) Let f: X — Y be an ss-sequentially quotient map and H be a sub-
space of Y. Take g = f|s-1(g such that g : f~Y(H) — H be a map.
Given a sequence {y,} s-convergence to y in H, there exists a se-
quence z, € f~1(y,) € f~1(H) such that (x,) s-converges to = €
f~Yy) € f~Y(H), since f is ss-sequentially quotient map and {y,}
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s-converges to y in Y. Therefore, g is an ss-sequentially quotient
map. O

The following examples shows that sequentially quotient and ss-sequentially
quotient mappings are independent.

Example 3.4. Let X = S1 @S2 and Y = S1 be a topological space as de-
fined in Example 2.4. Let f : X =Y be a mapping defined by

oy z1oa, ifi=1

f(xz,n)_{ T190-1, ifi=2

and f(z1) = f(x2) = 21.

Then clearly, f is sequentially quotient but not ss-sequentially quotient since
for an s-convergent sequence {x1,} in'Y, there is no s-convergent sequence
{z,,} in X such that x, € f~1(z1,).

Example 3.5. Let X = {z,/n € N} J{z} be a topological space such that

{zn} converges to x. Take X' = @ L, where A is the set of all subsequences
Len
of X with x and L s-converges to x. Let f : X' — X be an identity mapping.

Then clearly, f is ss-sequentially quotient but not sequentially quotient, since
there is no convergent sequence in X'.

We observe that the following implication is true when X and Y are first
countable, by Theorem 2.2 in [20].

ss-sequentially quotient map = sequentially quotient map

In [31], author raised a question: “How to characterize s-sequential spaces
as the images of metric spaces under some continuous mappings?". Also,
for s-Fréchet-Urysohn spaces. So, we characterize s-sequential spaces and
s-Fréchet-Urysohn spaces in terms of mappings.

Theorem 3.6. Y is an s-sequential space < every ss-sequentially quotient
mapping onto Y s quotient.

Proof. Let Y be an s-sequential space and f : X — Y be an ss-sequentially
quotient mapping onto Y. Suppose that f~!(U) is open in X and U is not
open in Y. Then Y \ U is not closed in Y. Therefore, by hypothesis, there
exists y € U such that {y,} s-converges to y such that y,, € X \ U. Since f is
ss-sequentially quotient, there exists a sequence {x,} s-converges to x such
that z € [~ (y) € SN0 and 2, € f ) € fLUY \U) = X\ fA(0).
Therefore, f~1(U) is not open in X, a contradiction.

Conversely, let every ss-sequentially quotient mapping onto Y be quotient.
For each y € Y, and for each sequence {s,} in Y, s-converges to y, let
SC(S,y) ={sn/n=1,2,3,...} U{y} be a topological space, where each s,
is a discrete point and neighborhood U of y is such that {n € N/s,, ¢ U} is

a thin subsequence of N. Let Y* = @ SC(S,y) x {S} where . be the set
Ses
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of all s-convergent sequences. Now we consider a mapping f : Y* = Y by
f((Ym:> S)) = Ym-
(1) f is onto.
For each point y € Y, there is a constant sequence S in Y such
that SC(S,y) = {sp, = y/n = 1,2,3,...} U {y} that is, there exists
SC(S,z) x{S} c Y* and f((y,95)) =y. Therefore, f is onto.
(2) f is continuous.
Let U be an open set in Y and (y/,S) € f~1(U). Then there is a
sequence S in Y such that y' € SC(S,y) = {sp/n = 1,2,3,...} U
{y} and f((¢/,S)) = ¢'. If (¢/,S) is an isolated point, then there
is nothing to prove. If (y/,S) = (y,S), then there exists a thin
subsequence N’ of N such that s, € U for n € N\ N’ and hence
{(sn,S8)/n € N\ N'} C f~YU) which is open in SC(S,y) and hence
open in Y*. Therefore, f~(U) is open in Y*. Hence f is continuous.
(3) It is clear from the definition of Y* that f is ss-sequentially quotient.

By our assumption f is quotient. Since Y* is an s-sequential space and f is
quotient, Y is an s-sequential space, by Theorem 2.4 in [31]. O

Theorem 3.7. Y is an s-Fréchet-Urysohn space < every ss-sequentially
quotient mapping onto Y is psuedo open.

Proof. Let Y be an s-Fréchet-Urysohn space and f : X — Y be an ss-
sequentially quotient mapping onto Y. Let y be a point in Y and U an
open neighborhood of f~!(y) such that y ¢ intf(U). Then y € cl(Y \
f(U)). Since Y is s-Fréchet-Urysohn space, there exists a sequence {y,}
in Y\ f(U) s-converges to y. Thus, there exists a sequence {z,} in X s-
converges to x where x,, € f~!(y,) for all n and z € f~!(y), that is, z,, €
fYyn) € fFHY\ f(U)) € X\ U and {x,} s-converges to € U which is
a contradiction to U is open. Therefore, f is pseudo open.

Conversely, let every ss-sequentially quotient mapping onto Y is pseudo
open.

Let Y* be a space defined in Theorem 3.6 which is an s-Fréchet-Urysohn
space, by Proposition 2.2, and f : Y* — Y mapping defined in the previous
Theorem 3.6. Then f is ss-sequentially quotient mapping and hence pseudo
open. Since Y* is an s-Fréchet-Urysohn space and f is pseudo open, Y is
an s-Fréchet-Urysohn space, by Proposition 2.3. U
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